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classical vacuum moduli space of SQCD and investigate such structures as its irreducible

components, degree and syzygies. We find the vacuum manifolds of SQCD to be affine
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1. Introduction and summary

Supersymmetric Quantum Chromodynamics (SQCD) is one of the most extensively studied

subjects in modern theoretical physics. Investigations within this laboratory have provided

a point of contact between field theory, phenomenology, string theory, and mathematics.

The moduli space of SQCD typically consists of continuous vacuum solutions of the field

equations. The lifting of the classical vacuum by quantum corrections [1], the phase struc-

ture [2, 3], dualities [4], etc., have all afforded powerful insights into the theory. The

excellent reviews and lectures [5 – 8] collect this work and provide references to the original

literature. Here, we take a novel perspective on this well established subject.

Observing that the vacuum moduli space of a supersymmetric gauge theory, due to

its subtle structure, is best described by the language of algebraic varieties, we employ

techniques from algebraic geometry to gain physical insight. This is very much in light of the

recent percolation of computational and algorithmic algebraic geometry into the study of

field theory [9 – 12] as well as the emergence of the plethystic programme for systematically

studying chiral gauge invariant operators using geometric methods [13 – 23]. This new,

geometric aperçu, as we demonstrate in this paper, is a remarkably fruitful development.

Geometric quantities such as Hilbert series, perhaps unfamiliar to the physics community,

provide a new understanding of the theory and allow us to easily perform calculations that

are cumbersome using standard methods.

Our focus in this paper is N = 1 SQCD with SU(Nc) gauge group and Nf flavours

of quarks and antiquarks that transform, respectively, in the antifundamental and fun-

damental representations of the gauge group. The fields are also distinguished by their

transformation properties under the SU(Nf )L × SU(Nf )R ×U(1)B ×U(1)R global symme-

try. In these initial investigations, we shall concentrate our attention on the case with a

vanishing superpotential. The vacuum space is conveniently described by polynomial equa-

tions written in terms of variables which are the holomorphic gauge invariant operators

(GIOs) of the theory, that is to say, the mesons, baryons, and antibaryons.

For Nf < Nc, the gauge group is spontaneously broken in the vacuum to SU(Nc−Nf ).

The only GIOs are mesonic, and these parametrise a classical moduli space that is N2
f -

dimensional. However, at the quantum mechanical level, non-perturbative corrections lift

the space of classical vacuum solutions completely via the dynamically generated ADS

superpotential, and consequently there is no quantum moduli space for Nf < Nc.

For Nf ≥ Nc, the gauge symmetry is completely broken at a generic point in the

classical moduli space, which is (2NcNf − N2
c + 1)-dimensional. The moduli space is

described by relations (syzygies) amongst mesonic operators and baryonic operators. With

the incorporation of quantum corrections, the classical moduli space for the Nf = Nc

theories which contained the singularity at the origin is deformed to a smooth hypersurface,
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whereas the quantum moduli space for the Nf > Nc theories is identical with the classical

one. Although the precise classical relations get modified by quantum corrections for

Nf = Nc, quantum corrections do not affect the number of chiral operators at each order

of quarks and antiquarks. Therefore, the generating functions which count the gauge

invariant operators in the Nf ≥ Nc theories are not changed by quantum corrections.

Algorithmic algebraic geometry, the plethystic programme, the Molien-Weyl formula,

and character expansions yield a more refined understanding of textbook facts about the

structure of the SQCD vacuum. In addition, the geometric invariants of the moduli space

of vacua capture a vast quantity of non-trivial information about the phenomenology of

the gauge theory. Algebraic geometry therefore supplies a powerful new window into the

structure of SQCD.

To facilitate the reading of this paper, we have highlighted the key points in bold font

as Observations. Below, we collect the main results of our geometric aperçu of SQCD.

Outline and key points:

• In section 2, we stress that the vacuum moduli space of a N = 1 gauge theory can

be thought of as an affine algebraic variety and review the procedure for how to

calculate this explicitly. We also discuss the importance of concepts such as primary

decomposition, which breaks the moduli space up into irreducible pieces, and the

Hilbert series, which enumerates the chiral GIOs of the theory.

• In section 3, we examine M(Nf ,Nc), the classical moduli space of vacua of SQCD,

for various values of Nc and Nf . We characterise the vacuum varieties in terms of

their defining equations and find them to be affine cones over (compact) weighted

projective varieties. For Nf < Nc, M(Nf ,Nc) ≃ C
N2

f (Observations 3.1 and 3.2). For

Nf = Nc, the moduli space is a complete intersection (in fact a single hypersurface)

in C
N2

f
+2 with a rational function as its Hilbert series (Observations 3.5 and 3.6).

For Nf > Nc, the moduli space is a non-complete intersection of polynomial relations

(syzygies) amongst the GIOs. We also analyse the case of two colours in detail. Using

characters of its global symmetry the generating function is written for arbitrary

number of flavours (Observation 3.8 and equation (3.18)).

• We find the precise weighted projective variety over which M(Nf ,Nc) is an affine cone

and tabulate the first few Hilbert series for these spaces in table 3. Moreover, we

find in all case studies that M(Nf ,Nc) is irreducible using primary decomposition and

conjecture this to hold in general (Observation 3.11).

• Importantly, we establish that M(Nf ,Nc) is Calabi-Yau (Observation 3.13).

This follows from the fact that the Hilbert series has palindromic numerator. We

outline a proof based on an independent argument.

• We discuss the quantum moduli space of SQCD in section 3.4.6. For Nf < Nc,

there is no supersymmetric vacuum. The classical vacuum geometry is an auxiliary

– 3 –
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space useful for counting gauge invariant operators. For Nf ≥ Nc, the Hilbert series

computed in the classical theory is quantum mechanically exact.

• In section 4, we obtain an analytic formula for the generating function of GIOs in

SQCD with fully refined chemical potentials corresponding to quarks and antiquarks;

this is a refined version of the Hilbert series of M(Nf ,Nc). The formula is in the form

of the Molien-Weyl integral, as given in equation (4.9). The results are in complete

agreement with those obtained in section 3 using algorithmic algebraic geometry and

also affirm the fact that the generating function (Hilbert series) encodes the defining

relations of the moduli space of vacua. Thus, the results of section 4 verify that the

geometry of the classical moduli space of N = 1 SQCD encapsulates the structure of

the chiral ring of BPS gauge invariant operators. Ours is the first systematic analysis

undertaken for (Nc ≥ 2, Nf > 3).1

• In section 5, we synthesise our prior results using representation theory and the

character expansion.

It proves useful to write the Hilbert series in terms of characters. This permits

the generalisation of our results to an arbitrary number of colours and flavours.

Subsequently, we obtain an important result, namely the full character expansion of

the generating function for any values of Nf and Nc (equations (5.1), (5.2) and (5.3)).

We can interpret the coefficients as Young Tableaux and arrive at selection rules

(Observation 5.6) for the terms appearing in the expansion.

2. The moduli space of N = 1 gauge theories

We begin by reviewing how to algorithmically compute the classical supersymmetric vac-

uum space of an N = 1 gauge theory. Consider a general N = 1 theory of the form

S =

∫
d4x

[∫
d4θ Φ†

ie
V Φi +

(
1

16g2

∫
d2θ trWαW

α +

∫
d2θ W (Φi) + h.c.

)]
. (2.1)

The Φi are chiral superfields in a representation Ri of the gauge group G; V is the vector

superfield in the Lie algebra g; Wα = −1
4D

2
e−V DαeV is the gauge field strength; and

W (Φi) is the superpotential, which is holomorphic in Φi. Integrating over superspace, the

scalar potential becomes

V (φi, φi) =
∑

i

∣∣∣∣
∂W

∂φi

∣∣∣∣
2

+
1

2

∑

a

g2

(
∑

i

φ†
iT

aφi

)2

, (2.2)

where φi is the lowest component of Φi, T a are the generators of G, and g is the gauge

coupling.2 The potential is minimised on loci where it vanishes. The condition V (φi, φi) = 0

1Earlier works [24, 25] contain some of the results for Nc = 2.
2We neglect Fayet-Iliopoulos terms associated to U(1) factors in G in this discussion but these can be

easily incorporated.
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yields the supersymmetry preserving D-term and F-term constraints:

Da =
∑

i

φ†
iT

aφi = 0 (D-terms) ;

fi =
∂W

∂φi
= 0 (F-terms) . (2.3)

There is a D-term for each generator T a of the gauge group and an F-term for each field.

The vacuum moduli space M is the space of solutions to D- and F-flatness constraints.

The action (2.1) has an enormous gauge redundancy that we can most easily eliminate

by working with GC , the complexification of the gauge group.3 The F-flatness conditions

are holomorphic and invariant under GC . The D-flatness conditions are trivial gauge fixing

parameters. It is a standard fact in N = 1 gauge theory that for any solution of the F-

term equations, there exists a unique solution to the D-term equations in the completion of

the orbit of the complexified gauge group. The moduli space is, therefore, the symplectic

quotient

M = F//GC , (2.4)

where F is the space of F-flat field configurations. The set of holomorphic gauge invariant

operators of the theory forms a basis for the D-orbits. The geometry of the vacuum is

therefore an algebraic variety specified by polynomial equations in the GIOs.

2.1 Moduli spaces using computational algebraic geometry

Recasting the computation of the vacuum geometry into efficient, algorithmic techniques

in algebraic geometry is the subject of [9 – 11]. For completeness, we briefly recollect the

method.

1. The F-flatness conditions are an ideal of the polynomial ring C[φ1, . . . , φn]:

〈fi=1,...,n〉 = 〈
∂W

∂φi
〉 . (2.5)

2. From the matter fields {Φ1, . . . ,Φn}, we construct a basis of GIOs ρ = {ρ1, . . . , ρk}.

The ρj are, by construction, uncharged under GC . The definitions of the GIOs in

terms of the fields defines a natural ring map:

C[φ1, . . . , φn]
ρ

−→ C[ρ1, . . . , ρk] . (2.6)

3. The moduli space M is then the image of the ring map:

C[φ1, . . . , φn]

{F = 〈f1, . . . , fn〉}

ρ
−→ C[ρ1, . . . , ρk] . (2.7)

That is to say, M ≃ Im(ρ) is an ideal of C[ρ1, . . . , ρk] which corresponds to an affine

variety in C
k. Practically, the image of the map (2.7), and thus the vacuum geometry

M, can be calculated using Gröbner basis methods as implemented in the algebraic

geometry software packages Macaulay 2 [26] and Singular [27].

3We recall, for example, that the complexification of SU(N) is SL(N, C).
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2.2 Primary decomposition and Hilbert series

Having obtained the vacuum moduli space explicitly as an algebraic variety, we have many

geometric tools at our disposal for analysing its structure. Two of the most fundamental

concepts are the following.

Extracting irreducible pieces: the moduli space may not be a single irreducible piece,

but rather, may be composed of various components. This is a well recognised feature in

supersymmetric gauge theories. The different components are typically called branches

of the moduli space, such as Coulomb or Higgs branches. It is an important task to

identify the different components since the massless spectrum on each component has its

own unique features.

We are thus naturally led to look for a process to extract the various irreducible

components of the vacuum space. Such an algorithm exists and, in the mathematics liter-

ature, is called primary decomposition of the ideal corresponding to the moduli space.

Algorithms for performing primary decomposition have been extensively studied in com-

putational algebraic geometry (cf., for example, [28] and for implementations, [26, 27]). A

convenient package which calls the computational algebraic geometry programme Singular

externally but which is based upon the Mathematica interface, which perhaps is more fa-

miliar to physicists, is STRINGVACUA [11]. In fact, using [11], the primary decomposition of

string vacua of phenomenological significance, is one of the subjects of [12].

The Hilbert series: as being pointed out in [13, 17, 19, 23], the Hilbert series is a key

to the problem of counting GIOs in a gauge theory. Mathematically, it is also an important

quantity that characterises an algebraic variety. Although it is not a topological invariant as

it depends on the embedding under consideration, it nevertheless encodes many important

properties of the variety once the embedding is known. We recall that for a variety M in

C[x1, . . . , xk], the Hilbert series is the generating function for the dimension of the graded

pieces:

H(t;M) =
∞∑

i=−∞

(dimC Mi)t
i , (2.8)

where Mi, the i-th graded piece of M can be thought of as the number of independent

degree i (Laurent) polynomials on the variety M. It will be understood henceforth that

we are speaking about complex dimension, and we shall simplify our notation accordingly.

A useful property of H(t) is that it is a rational function in t and can be written in

two ways:

H(t;M) =

{ Q(t)
(1−t)k , Hilbert series of the first kind ;

P (t)

(1−t)dim(M) , Hilbert series of the second kind .
(2.9)

Importantly, both P (t) and Q(t) are polynomials with integer coefficients. The powers of

the denominators are such that the leading pole captures the dimension of the embedding

space and the manifold, respectively.

One of the important expansions of the Hilbert series is a Laurent expansion about 1,

and the coefficient of the leading pole can be interpreted as the volume of the dual Sasaki-

Einstein manifold in the AdS/CFT context which in the case of the Calabi-Yau three-fold,

– 6 –
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gauge symmetry global symmetry

SU(Nc) SU(Nf )L SU(Nf )R U(1)B U(1)R U(1)Q U(1) eQ

Qi
a 1 1

Nf−Nc

Nf
1 0

Q̃a
i 1 −1

Nf−Nc

Nf
0 −1

Table 1: The gauge and global symmetries of SQCD and the quantum numbers of the chiral

supermultiplets. The quarks are Qi
a while the antiquarks are Q̃a

i . We also draw it as a quiver theory.

The central (red) node represents the SU(Nc) gauge symmetry while the two (blue) end nodes denote

the global U(Nf ) symmetries. Each node gives rise to a baryonic U(1) global symmetry, one of

which is redundant. We thus have U(1)Q,Q̃ that combine into the non-anomalous U(1)B (sum) and

anomalous U(1)A (difference).

this volume is related to the central charges of supersymmetric gauge theory (cf. [29, 23]).

Although it is not clear for general SQCD what the volume means, we can nevertheless

perform such an expansion. For a Hilbert series in second form,

H(t;M) =
P (1)

(1 − t)dim(M)
+ . . . , P (1) = degree(M) . (2.10)

In particular, P (1) always equals the degree of the variety.4

3. Supersymmetric QCD

Having set the stage with the necessary geometric background, let us specialise to the gauge

theory in which we are chiefly interested. In this section, let us fix notation by introducing

the content of the theory. Let there also be no superpotential, W = 0. Thus there will be

no F-terms, and the vacuum space is determined exclusively by the D-terms and is realised

as the relations among the GIOs of the theory.

We specify SQCD with gauge group SU(Nc) and Nf flavours by the ordered pair

(Nf , Nc). This theory has quarks Qi
a and antiquarks Q̃a

i , with flavour indices i = 1, . . . , Nf

and colour indices a = 1, . . . , Nc. Thus, there is a total of 2NcNf chiral degrees of freedom

from the quarks and antiquarks. Their quantum numbers are summarised in table 1 where

denotes the fundamental representation and 1 denotes the trivial representation of the

group.

4We recall that when an ideal is described by a single polynomial, the degree of the variety is simply the

degree of the polynomial. In the case of multiple polynomials, the degree is a generalisation of this notion.

It is simply the number of points at which a generic line intersects the variety.

– 7 –
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Notation for irreducible representations of SU(n): we can represent an irreducible

representation of SU(n) by a Young diagram. Let λi be the length of the i-th row (1 ≤ i ≤

n − 1) and let ai = λi − λi+1 be the differences of lengths of rows. Henceforth, we denote

such a representation by the notation [a1, a2, . . . , an−1]. For example, [1, 0, . . . , 0] represents

the fundamental representation, [0, . . . , 0, 1] represents the antifundamental representation,

and [1, 0, . . . , 0, 1] (where the second 1 is in the (n − 1)-th position) represents the adjoint

representation. For the product group SU(n)× SU(n), we use the notation [. . . ; . . .] where

the (n − 1)-tuple to the left of the ‘;’ is the representation of the left SU(n), and likewise

on the right.

3.1 The case of Nf < Nc

In this situation, at a generic point in the moduli space, the SU(Nc) gauge symmetry is

partially broken to SU(Nc − Nf ). Thus, there are

(N2
c − 1) − ((Nc − Nf )2 − 1) = 2NcNf − N2

f (3.1)

broken generators. The total number of degrees of freedom of the system is, of course,

unaffected by this spontaneous symmetry breaking and the massive gauge bosons each eat

one degree of freedom from the chiral matter via the Higgs effect. Therefore, of the original

2NcNf chiral supermultiplets, only N2
f singlets are left massless. Hence, the dimension of

the moduli space of vacua is

dim
(
MNf <Nc

)
= N2

f . (3.2)

We can describe the remaining N2
f light degrees of freedom in a gauge invariant way by an

Nf × Nf matrix field, composed of the mesons:

M i
j = Qi

aQ̃
a
j (mesons) . (3.3)

The M i
j are clearly gauge invariant as the colour index on the right hand side is summed.

There are no baryons since Nf < Nc. Thus, (3.3) constitute the only GIOs. Since Q

and Q̃ transform respectively in [1, 0, . . . ; 0, . . . , 0] and [0, . . . , 0; 0, . . . , 1] of the SU(Nf )L ×

SU(Nf )R part of the global symmetry, it follows that M transforms in the bifundamental

representation [1, 0, . . . ; 0, . . . , 1] of the SU(Nf )L×SU(Nf )R global symmetry. We note that

for the Nf < Nc theory, there are no relations (constraints) between mesons. Phrasing this

geometrically, and noting the dimension from (3.2), we have that

Observation 3.1. The moduli space is freely generated: there are no relations among the

generators. The space MNf <Nc is, in fact, nothing but C
N2

f .

GIOs composed of k quarks and k antiquarks must be of the form: M i1
j1

. . . M ik
jk

. Be-

cause of the symmetry under the interchange of any two M ’s, this product transforms in

the representation Symk[1, 0, . . . , 0; 0, . . . , 1] of the SU(Nf )L × SU(Nf )R global symmetry.

A computation of this k-th symmetric product for a bifundamental representation is rather

amusing and gives

Symk[1, 0, . . . , 0; 0, . . . , 1] =

Nf∑

i=1

∞∑

ni=0

[
n1, n2, . . . , nNf−1;nNf−1, . . . , n2, n1

]
δ


k −

Nf∑

j=1

jnj


 ,

(3.4)

– 8 –
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where5 the only dependence on k comes from the constraint on the number of boxes in

the Young diagram which is represented by the δ function. The total dimension of these

representations gives

1

k!
(N2

f )(N2
f + 1) . . . (N2

f + k − 1) =

(
N2

f + k − 1

k

)
(3.5)

independent components. We can sum this to give a generating function for the gauge

invariants and obtain:

Observation 3.2. The generating function of GIOs for SQCD with Nf < Nc is

gNf <Nc(t) =

∞∑

k=0

(
N2

f + k − 1

k

)
t2k =

1

(1 − t2)N
2
f

. (3.6)

We note that this formula does not depend on the number of colours Nc. The expres-

sion (3.6) is to be expected from the plethystic programme, it is simply the Hilbert series

for C
N2

f , with weight 2 for each meson.6 We will return to this point in the following

section.

We end this subsection by emphasising that what we have said so far about the Nf < Nc

theories is only valid in the semiclassical regime. If full quantum effects are taken into

account, there will no longer be a supersymmetric vacuum. In section 3.4.6, we discuss

how semiclassical results are modifed in the quantum theory. Until then, let us proceed

with calculations in the semiclassical limit.

3.2 The case of Nf ≥ Nc

In this case, at a generic point in the moduli space, the SU(Nc) gauge symmetry is broken

completely and hence the number of remaining massless chiral supermultiplets (i.e. the

dimension of the moduli space) is given by

dim
(
MNf≥Nc

)
= 2NcNf − (N2

c − 1) . (3.7)

We can describe the light degrees of freedom in a gauge invariant way by the following

basic generators:

M i
j = Qi

aQ̃
a
j (mesons) ;

Bi1...iNc = Qi1
a1

. . . Q
iNc
aNc

ǫa1...aNc (baryons) ;

B̃i1...iNc
= Q̃a1

i1
. . . Q̃

aNc

iNc
ǫa1...aNc

(antibaryons) .

(3.8)

Observation 3.3. For Nf ≥ Nc, under the global SU(Nf )L × SU(Nf )R, the mesons

M transform in the bifundamental [1, 0, . . . ; 0, . . . , 0, 1] representation, the baryons

B and antibaryons B̃ transform respectively in [0, 0, . . . , 1Nc;L, 0, . . . , 0; 0, . . . , 0] and

[0, . . . , 0; 0, . . . , 1Nc;R, 0 . . . , 0].

5We emphasise that in this equation, summations run over n1, . . . , nNf
but only n1, . . . nNf−1 appear in

the representation on the right hand side.
6Section 5.2 demonstrates that the expression in (3.6) can be written in terms of the plethystic expo-

nential as gNf <Nc(t) = PE [dim[1, 0, . . . , 0; 0, . . . , 1]t2] = PE [N2
f t2] .

– 9 –



J
H
E
P
0
5
(
2
0
0
8
)
0
9
9

In the above, 1j;L denotes a 1 in the j-th position from the left, and 1j;R denotes a 1

in the j-th position from the right.

The total number of basic generators for the GIOs, coming from the three contributions

in (3.8) is therefore

N2
f +

(
Nf

Nc

)
+

(
Nf

Nf − Nc

)
= N2

f + 2

(
Nf

Nc

)
. (3.9)

We emphasise that the basic generators in (3.8) are not independent, but they are

subject to the following constraints (see, e.g., [5]). Since the product of two epsilon tensors

can be written as the antisymmetrised sum of Kronecker deltas, it follows that

Bi1...iNc B̃j1...jNc
= M

[i1
j1

. . . M
iNc ]
jNc

. (3.10)

We can rewrite this constraint more compactly as

(∗B)B̃ = ∗(MNc) , (3.11)

where (∗B)iNc+1...iNf
= 1

Nc!
ǫi1...iNf

Bi1...iNc . Another constraint follows from the fact that

any product of M ’s, B’s and B̃’s antisymmetrised on Nc + 1 (or more) upper or lower

flavour indices must vanish:

M · ∗B = M · ∗B̃ = 0 , (3.12)

where a ‘·’ denotes a contraction of an upper with a lower flavour index. It can be shown

(see, e.g., [5]) that all other constraints follow from the basic ones (3.11) and (3.12).

Counting the number of quarks and antiquarks in these basic constraints and using

Observation 3.3, we find that

Observation 3.4. For Nf ≥ Nc, under the global SU(Nf )L × SU(Nf )R, constraint (3.11)

transforms as [0, . . . , 0, 1Nc ;L, 0, . . . , 0; 0, . . . , 0, 1Nc ;R, 0, . . . , 0]. Similarly, in (3.12), the first

constraint transforms as [0, . . . , 0, 1(Nc+1);L, 0, . . . , 0; 0, . . . , 0, 1] and the second, as

[1, 0, . . . , 0; 0, . . . , 0, 1(Nc+1);R, 0, . . . , 0].

The representation notation is as in Observation 3.3. Indeed, the dimension of the

representation corresponding to the constraint (3.11) is
(Nf

Nc

)2
, and the dimension of each

of the representations corresponding to the constraints (3.12) is Nf

( Nf

Nc+1

)
. Thus, there are

(Nf

Nc

)2
+ 2Nf

( Nf

Nc+1

)
basic constraints.

Because of these constraints, the spaces MNf≥Nc are not freely generated and provide

us with interesting algebraic varieties which we will study in the ensuing section. More-

over, these constraints also prevent us from writing and summing a generating function as

directly as in Observation 3.2. Nevertheless, we will see how the Hilbert series gives us the

right answer.
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3.2.1 The case of Nf = Nc

The special case of Nf = Nc deserves some special attention. From (3.9), the total number

of basic generators for the GIOs, coming from the three contributions in (3.8), is N2
f + 2.

From (3.7), the dimension of the moduli space is

dim
(
MNf =Nc

)
= N2

f + 1 . (3.13)

There is one constraint (3.11), which in this case can be reduced to a single hypersurface:

det(M) = (∗B)(∗B̃) , (3.14)

where we have used the identity detM = (1/Nc!) ∗ ∗(M
Nc). According to Observation 3.4,

this constraint transforms in the trivial [0, . . . , 0; 0, . . . , 0] representation of SU(Nf )L ×

SU(Nf )R (since the length of the weight before and after the semicolon is the rank of

SU(Nf ), or Nf − 1, there are no 1’s). Note that the relation (3.12) does not provide any

additional information and (3.11) constitutes the only constraint. Since, in this case, the

dimension of the moduli space equals the number of the basic generators minus the number

of constraints, we arrive at another important conclusion:

Observation 3.5. The moduli space MNf =Nc is a complete intersection. It is in fact a

single hypersurface in C
N2

f
+2.

An interesting question to consider is to determine the number of independent GIOs

that can be constructed from the basic generators (3.8) subject to the constraints (3.11)

and (3.12). In the case Nf = Nc, where the only constraint is (3.14), the generating

function can be easily computed from the knowledge that the modul space is a complete

intersection (See [13] for a detailed discussion on this). There are N2
c mesonic generators

of weight t2 and two baryonic generators of weight tNc , subject to a relation of weight t2Nc .

As a result, the generating function takes the form

Observation 3.6. For Nf = Nc SQCD, the generating function for the GIOs is

gNf =Nc(t) =
1 − t2Nc

(1 − t2)N2
c (1 − tNc)2

. (3.15)

This is indeed the Hilbert series of the hypersurface (3.14).

3.3 Special case: Nc = 2

Let us illustrate this technology with the concrete example of Nc = 2 colours and a general

number Nf of flavours. Here we can obtain nice general expressions. There are Nf quarks

transforming in the fundamental representation and Nf antiquarks in the antifundamental

of the SU(2) gauge group. However, since both of these representations are identical for

SU(2), there is no distinction to be made between quarks and antiquarks. Therefore, all

quark fields can be written in the form Qi
a, with a colour (gauge) index a = 1, 2 and a

multiplet index i = 1, . . . , 2Nf . Hence, we first have:
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Observation 3.7. The global flavour symmetry of (Nf , Nc = 2) for general Nf is SU(2Nf ).

The basic generators of GIOs are mesons:

M ij = QiQj , (3.16)

where the contraction over the colour indices a, b by an epsilon symbol7 has been suppressed

in order to avoid the potential confusion between the gauge and global symmetries. The

fundamental representation of SU(2) has only two colour indices and therefore we find that

any product of M ’s antisymmetrised on three (or more) flavour indices vanishes. This

results in a simple condition for Nf ≥ 2:

ǫi1...i2Nf
M i1i2M i3i4 = 0 , (3.17)

where i1, . . . , i2Nf
= 1, . . . , 2Nf .

Counting the number of quarks in (3.16) and (3.17), we find that

Observation 3.8. For Nc = 2, under the SU(2Nf ) global symmetry, the meson trans-

forms in the [0, 1, 0, . . . , 0] representation, and the basic constraint (3.17) transforms as

[0, 0, 0, 1, 0, . . . , 0]. The dimension of these representations are respectively
(2Nf

2

)
and

(2Nf

4

)
.

We see that the GIOs in the Nc = 2 theories must be (symmetric) products of mesons,

namely Mk at the order of 2k quarks. Without the constraints generated by (3.17), we

would say that Mk transforms in the representation Symk[0, 1, 0, . . . , 0] of SU(2Nf ). How-

ever, as we have just noted, any product of M ’s antisymmetrised on three (or more) flavour

indices vanishes. It then follows that the GIOs at the order 2k of quarks transform in the

irreducible representation [0, k, 0, . . . , 0]. Therefore, we reach an important conclusion that

Observation 3.9. The generating function for (Nf , Nc = 2) theory for general Nf ≥ 1 is

g(Nf ,Nc=2)(t) =
∞∑

k=0

dim[0, k, 0, . . . , 0]t2k

=
∞∑

k=0

(2Nf + k − 1)!(2Nf + k − 2)!

(2Nf − 1)!(2Nf − 2)!(k + 1)!k!
t2k

= 2F1(2Nf − 1, 2Nf ; 2; t2) , (3.18)

where 2F1 is the standard hypergeometric series.

It is interesting that a hypergeometric function should be the Hilbert series of an algebraic

variety (for specific integer values of Nf , of course, the hypergeometric degenerates into

rational functions, examples of which we will see later).

7It is an epsilon contraction rather than a summation because the doublet of SU(2) is a pseudoreal

representation.
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3.4 The algebraic geometry of SQCD vacuum

We have now presented SQCD in some detail. Though some of the information is standard,

we have also recast the vacuum structure in a geometric language and have obtained new

analytic formulae for the generating functions of GIOs. In this section, let us continue along

this geometric vein and use the techniques introduced in section 2.1 to algorithmically find

the supersymmetric vacuum space. This not only furnishes a good check of our methods

but also gives us new geometric insight into SQCD.

Since there is no superpotential, the ring map (2.7) here becomes

C[Qi
a, Q̃

a
i ]

ρ
−→ C[M i

j , B
i1...iNc , B̃i1...iNc := ρ1, . . . , ρk] , k = N2

f + 2

(
Nf

Nc

)
, (3.19)

and the classical moduli space M is readily computed as the variety associated to the

image ideal in the target C[M i
j , B

i1...iNc , B̃i1...iNc ]. Therefore, we have that:

Observation 3.10. The classical vacuum moduli space of SQCD, as an explicit affine

algebraic variety, is defined by the syzygies, or relations amongst the mesons and baryons.

Equations (3.11) and (3.12) are precisely these syzygies.

3.4.1 The example of (Nf = 4, Nc = 2)

Let us study an example in detail. Take the non-trivial case of two colours and four flavours.

Using (3.19) we immediately find that in full component form, it is given by 70 homogeneous

quadratic equations, each containing three monomials, in 28 variables. The dimension is

13 and the degree is 132. (For brevity we do not present the lengthy polynomials here.)

Therefore M(4,2) is an affine variety realised as the non-complete intersection of dimension

13 and degree 132 in C
28. We can say more since each equation is homogeneous. (This

is not true in general; we will discuss shortly how using appropriate weights naturally

homogenises the problem.) We can projectivise to P
27 and then M(4,2) is, by definition,

an affine cone over a projective variety of dimension 12 and degree 132 in P
27.

Let us adhere to the notation of [10] and let

(d, δ|n|mn1
1 mn2

2 . . .) := Affine variety of complex dimension d, realised as an affine cone

over a projective variety of dimension d − 1 and degree δ,

given as the intersection of ni polynomials of degree mi in P
n.

(3.20)

Then, in this notation, we can write

M(Nf =4,Nc=2) ≃ (13, 132|27|270) . (3.21)

The dimension and degree are but two simple quantities one could ask about an al-

gebraic variety. Another important property, as discussed in section 2.2, is whether the

associated ideal is primary. This can be ascertained either by direct methods or by per-

forming a full primary decomposition which extracts the irreducible pieces. We perform
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Nf\Nc 1 2 3 4 5

1 (2, 2) C C C C

2 (4, 6) (5, 2|5|21) C
4

C
4

C
4

3 (6, 20) (9, 14|14|215) (10, 3) C
9

C
9

4 (8, 70) (13, 132|27|270) (16, 115) (17, 4) C
16

5 (10, 252) (17, 1430|44|2210) (22, 10410) (25, 744) (26, 5)

Table 2: The classical moduli space M of SQCD with Nf flavours and Nc colours, explicitly as

affine algebraic varieties. The pair (d, δ) denotes dimension and degree respectively. When M is

defined by homogeneous equations, and is thus an affine cone over a projective variety, we use the

notation in (3.20). For Nf < Nc, the moduli space is freely generated and is just flat space.

this analysis and find that M(4,2) is in fact an irreducible variety. We can find its Hilbert

series, in second form, as

H(t; M(4,2)) =
1 + 15 t + 50 t2 + 50 t3 + 15 t4 + t5

(1 − t)13
. (3.22)

Note that the weight for the meson here is t which is different than the weight t2 given

in (3.18). This change of variables affects the degree of embedding but not the dimension

of the moduli space. Physically, this change of variables can be interpreted as a redefinition

of the Boltzmann constant by a factor 2. Indeed, other than this change of t → t2, the

standard definition of 2F1 for Nf = 4, substituted into (3.18), gives precisely the above

expression and we may rest assured.

Now, the exponent of the denominator encodes the dimension; the numerator, evalu-

ated at 1, gives the degree, which is 132. Another remarkable property of the numerator is

that it is palindromic, i.e. the coefficients an and a5−n are the same. As we shall see below,

this suggests that our affine variety M(4,2) is in fact Calabi-Yau!

3.4.2 Other examples

We now move on to a host of examples. We tabulate M for some low values of (Nf , Nc). If

M happens to be an affine cone over a projective variety in unweighted projective space, we

will use the above notation, otherwise, we will simply indicate the pair (d, δ) for dimension

and degree, respectively. This information is summarised in table 2.

3.4.3 U(1)-charges and weighted embeddings

The forms of the moduli spaces and Hilbert series above may not look immediately en-

lightening. This is because we have been working in affine embeddings without taking into

account the inherent weights associated with the problem. A not dissimilar situation has

already been noted in [17], where it was pointed out that the del Pezzo surfaces are much

easier to realise in weighted projective spaces than as ordinary projective varieties.

We notice that the GIOs are each composed of products of fundamental fields. In an

N = 1 supersymmetric theory, there is always a U(1)-charge, which could be construed as

the R-charge, that we assign to the fields. For example, for the GIOs above in pure SQCD,
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if we normalise and assign an R-charge 1 to each fundamental quark Qi
a and antiquark

Q̃j
a, then each mesonic GIO would have R-charge of 2 and each (anti)baryonic GIO, an

R-charge of Nc. We will find it useful to weight the target ring in (2.7) as [2 : 2 : . . . : 2 :

Nc : Nc : . . . : Nc] and thus we modify the map in (3.19) to

C[Qi
a, Q̃

a
i ]

ρ
−→ C[M i

j , B
i1...iNc , B̃i1...iNc := ρ1, . . . , ρk][2:...:2:Nc:...:Nc] . (3.23)

Here we have labelled the target ring with weighted variables explicitly. The equations that

describe the vacuum varieties are always homogeneous in the projective spaces weighted in

this manner.

In light of all of the moduli spaces being, strictly, affine cones over weighted projective

varieties, we need to refine the notation in (3.20) to

(d, δ|n[w1 : . . . : wn+1]|m
n1
1 mn2

2 . . .) := Affine variety of complex dimension d, realised as

an affine cone over a weighted projective variety

of dimension d − 1 and degree δ, given as

the intersection of ni polynomials of degree mi

in weighted projective space P
n
[w1:...:wn+1]

. (3.24)

Under our weighting scheme by the R-charge given in (3.23), the moduli space of SQCD, for

some low values, is presented in table 3. There are several agreements, as can be seen from

the table. The dimensions do indeed agree with (3.7); moreover, for Nf = Nc, M is indeed

a single hypersurface as can be seen from the defining equations, in accord with (3.14)

and (3.15). Next, we compute the weighted Hilbert series of the second kind and present

them to the right of moduli space. The ensuing sections show how these rather complicated

rational functions, here found using algorithmic algebraic geometry, can be obtained from

the plethystic programme.

The degrees of the varieties listed in table 3 are rather large, but this is merely a

vestige of the fact that we have assigned high weights to the GIOs corresponding to the

number of fundamental fields contained within. Let us return to the unweighted case for

a moment. Examining (2.10), we see that the highest power in 1
1−t is the dimension of M

and the coefficient of that leading order term is the degree of M. This is a fundamental

property of the Hilbert series of second kind. Now, in the weighted case in table 3, such a

relation persists, and we see immediately that the leading coefficient in the same expansion

of the Hilbert series, c, and the degree d of the variety obey the relation c
∏
i

wi = d. This

is simply the generalisation of the c = d situation of the unweighted case above.

3.4.4 Further geometric properties

As emphasized in the introduction, our technique allows writing down explicit equations

for the moduli space. In component form, these equations can be quite complicated. For
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(Nf , Nc) M Hilbert Series H(M; t)

(2, 2) (5, 4|5[2 : 2 : 2 : 2 : 2 : 2]|41) 1+t2

(1−t2)5

(3, 2) (9, 896|14[215 ]|415) 1+6 t2+6 t4+t6

(1−t2)9

(4, 2) (13, 4325376|27[228 ]|470) 1+15 t2+50 t4+50 t6+15 t8+t10

(1−t2)13

(5, 2) (17, 383862702080|44[245 ]|4210) 1+28 t2+196 t4+490 t6+490 t8+196 t10+28 t12+t14

(1−t2)17

(3, 3) (10, 6|10[29 : 32]|61) 1+t3

(1−t2)9 (1−t3)

(4, 3) (16, 88128|23[216 : 38]58616712) 1+4 t2+4 t3+10 t4+8 t5+14 t6+8 t7+10 t8+4 t9+4 t10+t12

(1−t2)12(1−t3)4

(4, 4) (17, 8|17[216 : 42]|81) 1+t4

(1−t2)16 (1−t4)

Table 3: With natural weighting in (3.23), the vacuum moduli space M(Nf ,Nc) of SQCD are all

affine cones over (compact, homogeneous) weighted projective varieties, using notation in (3.24).

We also compute the (weighted, second form) Hilbert series. Indeed, for Nf < Nc, M(Nf ,Nc) is

trivially C
N2

f , with Hilbert series (1 − t2)−N2

f .

illustration, we write down M(Nf ,Nc); for some low values:

M1,1 = {−y1 + y2y3} ;

M2,1 = {−y6y8 + y4,−y5y8 + y2,−y6y7 + y3,−y5y7 + y1} ;

M2,2 = {y2y3 − y1y4 + y5y6} ;

M3,3 = {y3y5y7 − y2y6y7 − y3y4y8 + y1y6y8 + y2y4y9 − y1y5y9 + y15y21} .

(3.25)

These explicit equations allow us to do far more than merely compute the dimension,

degree and Hilbert series. However complicated the equations are, computational algebraic

geometry has standard algorithms for manipulating them. First, we can see whether the

vacuum moduli space has reducible components by primary decomposition. For all of the

cases that we have considered, we find that:

Observation 3.11. The classical moduli space M(Nf ,Nc) of SQCD is irreducible for all

value of Nf and Nc.

We conjecture that this is true in general (it should be noted that the algorithms we

have employed check this only over the rationals and not over complex coefficient fields).

The irreducibility of moduli spaces is certainly not a feature of generic gauge theories;

many reducible cases exist in the literature from very early studies of supersymmetric

gauge theories. Few recent ones are presented, for example, in [23, 30]. An argument8

why Observation 3.11 may be true in general is that the moduli space as a symplectic

quotient (2.4), in the absence of a superpotential is simply C
2NcNc/SL(Nc, C). Since C

2NcNc

8We are grateful to Alberto Zaffaroni for this point.
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is irreducible and SL(Nc, C) is a continuous group, we expect the resulting quotient to be

also irreducible.

Next, we see that for Nc = 1 (Wess-Zumino model with no continuous gauge group and

2Nf chiral multiplets), the moduli space is manifestly toric (i.e. generated as a monomial

ideal, consisting of equations of the form ‘monomial = monomial’). This is no surprise,

since Nc ≥ 2 are non-Abelian actions.

Importantly, we can also calculate such familiar quantities, given the defining equation,

as the Euler number χ of the compact weighted projective base over which the moduli space

is an affine cone. We find that, for example, χ(Base(M2,2)) = 1. Finding such topological

invariants of the moduli space is clearly of great interest and deserves investigation in its

own right; we hence leave this to subsequent work. What is perhaps a little surprising is

a universal property of the SQCD vacuum: that it is, in fact, Calabi-Yau. We now delve

into this fact in the next subsection.

3.4.5 The SQCD vacuum is Calabi-Yau

We observe that the numerators of the Hilbert series in table 3 are palindromic, i.e. they

have the symmetry ak = an−k where n is the degree of the numerator and ak are the

coefficients. A rigorous proof of this observation for all Hilbert series of M(Nf ,Nc) using

plethystic technique will be given in section 4.3. There is a beautiful theorem [31], which

states:

Theorem 3.12. (Stanley 1978) The numerator to the Hilbert series of a graded Cohen-

Macaulay domain R is palindromic if and only if R is Gorenstein.

A similar situation was encountered in [23], and the reader is referred to the discus-

sion of Stanley’s theorem there. The point is that our coordinate rings for M(Nf ,Nc) are

not merely Cohen-Macaulay9 but are algebraically Gorenstein [32]. This is an important

conclusion because for affine varieties Gorenstein means Calabi-Yau.10 Therefore, struc-

turally, we conclude that M(Nf ,Nc) is, in fact, an affine Calabi-Yau cone over a weighted

projective variety (which itself as a compact space is seen from the above subsections to

be rather complicated and not necessarily Calabi-Yau). In brief,

Observation 3.13. The classical moduli space M(Nf ,Nc) of SQCD is Calabi-Yau.

3.4.6 The quantum moduli space of SQCD

In this section, we shall summarise the quantum effects on the vacuum moduli space of

SQCD. Excellent reviews collecting this work are [1, 5 – 7, 33].

9We shall be working with Cohen-Macaulay rings throughout. Briefly, the Cohen-Macaulay condition

for a ring R is that there is a maximal R-regular sequence in the maximal ideal generating an irreducible

ideal. This is a technical remark that will not be important to this paper. We have checked this property

algorithmically for the cases we have encountered.
10For compact, (weighted) projective varieties, this is not enough; Gorenstein means that the canonical

sheaf is reflexive rank 1 but not necessarily trivial. We are indebted to Balázs Szendröi for clarifying this

issue and his wonderful course on graded modules.
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3.4.7 The Nf < Nc theories

A non-perturbative Affleck-Dine-Seiberg (ADS) superpotential [1, 5 – 7, 33], whose form is

consistent with symmetries and holomorphy, is dynamically generated:

WADS = CNc,Nf

(
Λ3Nc−Nf

detM

)1/(Nc−Nf )

, (3.26)

where Λ is the scale of the theory and CNc,Nf
is in general renormalisation scheme-

dependent. Because of the dependence of WADS on meson fields with negative powers,

it is never zero, but flows to zero at infinity. Consequently, at any finite values of the me-

son fields, WADS is non-zero, and there is no supersymmetric vacuum. Quantum corrections

therefore lead to a ‘runaway’ vacuum.

Although this superpotential is non-polynomial in the quark and antiquark fields, we

can still solve for the F-terms and examine the moduli space of solutions, a problem we

have adapted to STRINGVACUA [11]. As expected, there is no stable vacuum. The classical

vacuum is an auxiliary space that allows for the enumeration of GIOs via the Hilbert series.

While the classical vacuum variety does not have a physical meaning in the full quantum

theory, it nevertheless encapsulates information about the operatorial structure of SQCD

for Nf < Nc.

3.4.8 The Nf ≥ Nc theories

The case of Nf = Nc: the moduli space is still parameterised by the basic generators

M , B, and B̃. The classical constraint (3.14) is however modified by a one instanton

effect [1, 5 – 7], and the quantum moduli space is described by the relation

det(M) − (∗B)(∗B̃) = Λ2Nc . (3.27)

From the constraint (3.14), we see that the classical moduli space is singular at the origin:

M = B = B̃ = 0. This singularity does not exist in the true vacuum (3.27), and so the

latter geometry is everywhere smooth. Although details of the GIOs and constraints at

each order of quarks and antiquarks are modified, their numbers are unaffected. Thus, in

spite of different geometrical properties between the classical and quantum moduli spaces,

the Hilbert series is not corrected quantum mechanically.

The case of Nf > Nc: in this case, the quantum moduli space coincides with the

classical moduli space [1, 7]. Thus, geometric and algebraic features of the classical vacuum

variety MNf >Nc are also properties of the true vacuum of the theory.

A comment on Seiberg duality: in the conformal window, the convenient description

of SQCD may be in terms of dual variables [4]. An early motivation in checking Seiberg

duality using Hilbert series is due to Pouliot [24]. Later Römelsberger [25] showed that

the Hilbert series of SU(2) SQCD with three flavours and its magnetic dual match. There

are, however, no further geometric checks in the literature. It is relatively easy to verify

that the dimensions of the electric and magnetic theories agree. Using the Hilbert series

to more carefully examine the geometric aspects of Seiberg duality is clearly an interesting

problem that deserves investigation in its own right. We leave this to subsequent work.
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4. Counting gauge invariants: the plethystic programme and Molien-Weyl

formula

Having studied the algebro-geometric properties of the moduli space of SQCD, let us now

move on to the problem of enumerating gauge invariants and encoding global symmetries.

There have been a series of works (e.g., [24, 25, 34, 22, 16, 37, 38, 18, 21, 35, 36, 39])

that count the number of BPS GIOs in various gauge theories. However, for SQCD,

the computations were usually limited to the case Nc = 2 due to technical difficulties.

Recently, a plethystic programme has provided a general recipe for counting GIOs. In

this section and below, we demonstrate that this programme provides us with not only a

very systematic way of counting the GIOs, but also a deeper understanding of the moduli

spaces of SQCD.

In SQCD the chiral GIOs are symmetric functions of quarks and antiquarks which

transform respectively in the bifundamental [1, 0, . . . , 0; 0, . . . , 0, 1] of SU(Nf )L × SU(Nc)

and the bifundamental [1, 0, . . . , 0; 0, . . . , 0, 1] of SU(Nc) × SU(Nf )R. Let us denote the

character of the (anti) fundamental representation of SU(N), respectively, as χ
SU(N)
[0,...,1], and

χ
SU(N)
[1,0,...,0]. To write down explicit formulae and for performing computations we need to

introduce weights for the different elements in the maximal torus of the different groups.

We use za, a = 1, . . . , Nc − 1 for colour weights and ti, t̃i, i = 1, . . . , Nf for flavour weights.

These weights have the interpretation of chemical potentials11 for the charges they count

and the characters of the representations are functions of these variables. Correspondingly,

the character for a quark is χ
SU(Nf )L×SU(Nc)

[1,0,...,0;0,...,0,1] (ti, za) and the character for an antiquark

is χ
SU(Nc)×SU(Nf )R

[1,0,...,0;0,...,0,1] (za, t̃i). We further introduce two chemical potentials which count the

number of quarks and antiquarks, t, and t̃, respectively. A convenient combinatorial tool

which constructs symmetric products of representations is the plethystic exponential,

which is a generator for symmetrisation [13, 17 – 19, 21]. To briefly remind the reader, the

plethystic exponential, PE, of a function g(t1, . . . , tn) is defined to be exp

(
∞∑

k=1

g(tk1 ,...,tkn)
k

)
.

Whence, we have that

PE
[
tχ

SU(Nf )L×SU(Nc)

[1,0,...,0;0,...,0,1] (ti, za) + t̃χ
SU(Nc)×SU(Nf )R

[1,0,...,0;0,...,0,1] (za, t̃i)
]

≡ exp

[
∞∑

k=0

1

k

(
tkχ

SU(Nf )L×SU(Nc)

[1,0,...,0;0,...,0,1] (tki , z
k
a) + t̃kχ

SU(Nc)×SU(Nf )R

[1,0,...,0;0,...,0,1] (zk
a , t̃ki )

)]
. (4.1)

A somewhat more explicit form for the character can be

tχ
SU(Nf )L×SU(Nc)

[1,0,...,0;0,...,0,1] (ti, za) = χ
SU(Nc)
[0,...,0,1](zl)

Nf∑

i=1

ti , (4.2)

11Strictly speaking, they are not true chemical potentials conjugate to the number of charges. They are

in fact fugacities. We shall however slightly abuse the terminology by calling them chemical potentials.
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which then gives

PE


χ

SU(Nc)
[1,0,...,0](zl)

Nf∑

i=1

t̃i + χ
SU(Nc)
[0,...,0,1](zl)

Nf∑

j=1

tj


 (4.3)

= exp

[
∞∑

k=0

(χ
SU(Nc)
[1,0,...,0](z

k
l )

Nf∑
i=1

t̃ki + χ
SU(Nc)
[0,...,0,1](z

k
l )
∑Nf

j=1 tkj

k

)]
.

Here, the dummy variables ti and t̃j are the chemical potentials associated to quarks

and antiquarks counting the U(1)-charges in the maximal torus of the global symmetry.

Henceforth, we shall take their values to be such that |ti| < 1 for all i.

We emphasize that in order to obtain the generating function that counts gauge in-

variant quantities, we need to project the representations of the gauge group generated by

the plethystic exponential onto the trivial subrepresentation, which consists of the quanti-

ties invariant under the action of the gauge group. Using knowledge from representation

theory, this can be done by integrating over the whole group (see, e.g., appendix A of [38]).

Hence, the generating function for the (Nf , Nc) theory is given by

g(Nf ,Nc) =

∫

SU(Nc)
dµSU(Nc) PE


χ

SU(Nc)
[1,0,...,0](zl)

Nf∑

i=1

t̃i + χ
SU(Nc)
[0,...,0,1](zl)

Nf∑

j=1

tj


 . (4.4)

This formula is also used in the commutative algebra literature (see, e.g., [40]) and is

called the Molien-Weyl formula. We note that the Haar measure µSU(Nc) can be written

explicitly using Weyl’s integration formula (see, e.g., section 26.2 of [41]):

∫

SU(Nc)
dµSU(Nc) =

1

(2πi)Nc−1Nc!

∮

|zl|=1

Nc−1∏

l=1

dzl

zl
∆(φ)∆(φ−1) , (4.5)

where {φa(z1, . . . , zNc−1)}
Nc

a=1 are coordinates on the maximal torus of SU(Nc) with∏Nc

a=1 φa = 1, and ∆(φ) =
∏

1≤a<b≤Nc
(φa − φb) is the Vandermonde determinant.

Let us take the weights of the fundamental representation of SU(Nc) to be as follows:

L1 = (1, 0, . . . , 0) , Lk = (0, 0, . . . ,−1, 1, . . . 0) , LNc = (0, . . . ,−1) , (4.6)

where all L’s are (Nc − 1)-tuples, and for Lk (with 2 ≤ k ≤ Nc − 1), we have −1 in the

(k−1)-th position and 1 in the k-th position. With this choice of weights, the corresponding

coordinates on the maximal torus of SU(Nc) are

φ1 = z1 , φk = z−1
k−1zk , φNc = z−1

Nc−1 , (4.7)

where 2 ≤ k ≤ Nc − 1. Hence, the characters of the fundamental and antifundamental

representations are respectively

χ
SU(Nc)
[1,0,...,0] =

Nc∑

a=1

φa = z1 +

Nc−1∑

k=2

zk

zk−1
+

1

zNc−1
,

χ
SU(Nc)
[0,...,0,1] =

Nc∑

a=1

φ−1
a =

1

z1
+

Nc−1∑

k=2

zk−1

zk
+ zNc−1 . (4.8)
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Putting all the above together, we arrive at the Molien-Weyl formula for computing the

generating function for GIOs of SQCD and which also gives an analytic way of computing

the Hilbert series for the vacuum moduli space M(Nf ,Nc):

g(Nf ,Nc) =
1

(2πi)Nc−1Nc!

∮

|zl|=1

Nc−1∏

l=1

dzl

zl
∆(φ)∆(φ−1) × (4.9)

×PE



(

z1 +

Nc−1∑

k=2

zk

zk−1
+

1

zNc−1

) Nf∑

i=1

t̃i +

(
1

z1
+

Nc−1∑

k=2

zk−1

zk
+ zNc−1

) Nf∑

j=1

tj


 .

4.1 The case of two colours: Nc = 2

Thus armed, we can compute the generating function for SQCD. Let us begin with two

colours where some results are known.

4.1.1 The example of (Nf = 1, Nc = 2)

There are two chiral multiplets (i.e. a quark and an antiquark being identified) in the

theory, and we denote their chemical potentials by t1 and t2. From (4.4), the generating

function g(Nf =1,Nc=2) is given by

g(1,2)(t1, t2) =

∫

SU(2)
dµSU(2)(z) PE[χ

SU(2)
[1] (z)(t1 + t2)] , (4.10)

where χ
SU(2)
[1]

(z) = z + 1/z. Using (4.3), we find that

PE

[(
z +

1

z

)
(t1 + t2)

]
= exp

(
2∑

l=1

∞∑

k=1

(ztl)
k + (z−1tl)

k

k

)

=
1

(1 − t1z)(1 − t2z)(1 − t1
z )(1 − t2

z )
, (4.11)

where we have used the fact that − log(1 − x) =
∞∑

k=1

xk/k. Using formula (4.5), we can

write the Haar measure in (4.10) as

∫

SU(2)
dµSU(2)(z) →

1

2

1

2πi

∮

|z|=1

dz

z
(1 − z2)(1 − z−2) . (4.12)

Therefore we can rewrite (4.9) in the form of Molien integral formula (see, e.g., [24]):

g(1,2)(t1, t2) =
1

2

1

2πi

∮

|z|=1
dz

(1 − z2)(1 − z−2)

z(1 − t1z)(1 − t2z)(1 − t1z−1)(1 − t2z−1)
. (4.13)

Recall that the chemical potentials t1 and t2 have been taken to be such that 0 < |t1|, |t2| <

1. The integrand therefore has poles at z = 0, t1, t2. By the residue theorem, we find that

g(1,2)(t1, t2) =
1

1 − t1t2
=

∞∑

j=0

(t1t2)
j . (4.14)
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The term t1t2 in the denominator implies that there is only one basic generator of GIOs

which is constructed from two chiral multiplets. Moreover, the series expansion suggests

that any other operator in the chiral ring is given as a power of such a basic generator. If

we set t1 = t2 = t, then

g(1,2)(t) =
1

1 − t2
= 1 + t2 + t4 + t6 + . . . , (4.15)

which is in agreement with the result presented in [24, 21]. Of course, this is also the

result for the Hilbert series in Observation 3.2 at Nf = 1, so we have agreement with the

algebro-geometric perspective as well.

4.1.2 (Nf , Nc = 2) with arbitrary flavours

Let us move on to the case of arbitrary number Nf of flavours and two colours. Now, we

have 2Nf chiral multiplets. From (4.4), the generating function is then given by

g(Nf ,Nc=2)(t1, . . . , t2Nf
) =

∫

SU(2)
dµSU(2)(z) PE



(

z +
1

z

) 2Nf∑

i=1

ti


 , (4.16)

where, according to (4.3), the plethystic exponential can be written as

exp




∞∑

k=1

2Nf∑

l=1

(ztl)
k + (z−1tl)

k

k


 =

2Nf∏

l=1

(1 − tlz)−1(1 − tlz
−1)−1 , (4.17)

where again we have used the log expansion. Changing the measure of integration as

above, (4.9) becomes

g(Nf ,Nc=2)(t1, . . . , t2Nf
) =

1

2

1

2πi

∮

|z|=1

dz

z
(1 − z2)(1 − z−2)

2Nf∏

l=1

(1 − tlz)−1(1 − tlz
−1)−1 .

(4.18)

The integral can again be evaluated by residues.

For example, in the case Nf = 2, the poles located within the unit circle are z =

0, t1, . . . , t4 and we find that

g(Nf =2,Nc=2)(t1, . . . , t4) =
1 − t1t2t3t4

(1 − t1t2)(1 − t1t3)(1 − t1t4)(1 − t2t3)(1 − t2t4)(1 − t3t4)
.

(4.19)

The expressions titj (with 1 ≤ i < j ≤ 4) in the denominator indicate that there are

six basic generators of GIOs, each of which is constructed from two chiral multiplets.

Explicitly, these basic generators are mesons. Moreover, the numerator suggests that there

is one constraint between these generators at order four of chiral multiplets, namely

Pf M = ǫi1...i4M
i1i2M i3i4 = 0 , (4.20)
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a constraint which has already been seen in (3.17). The general formula for Nf > 1 can be

written as

g(Nf >1,Nc=2)(t1, . . . , t2Nf
) =

2Nf∑
k=1

(−1)k(tk)
2Nf−3(1 − t2k)

∏
1≤i<j≤2Nf

i,j 6=k

(ti − tj)(1 − titj)

2
∏

1≤i<j≤2Nf

(ti − tj)(1 − titj)
.

(4.21)

Now, if we unrefine and set ti = t for all i = 1, . . . , 2Nf , we should reproduce the

results for the Hilbert series discussed before. Let us present some results for small values

of Nf :

g(1,2)(t) =
1

1 − t2
, (4.22)

g(2,2)(t) =
1 − t4

(1 − t2)6
=

1 + t2

(1 − t2)5
,

g(3,2)(t) =
1 + 6t2 + 6t4 + t6

(1 − t2)9
,

g(4,2)(t) =
1 + 15t2 + 50t4 + 50t6 + 15t8 + t10

(1 − t2)13
,

g(5,2)(t) =
1 + 28 t2 + 196 t4 + 490 t6 + 490 t8 + 196 t10 + 28 t12 + t14

(1 − t2)17
.

These highly non-trivial results are in perfect agreement with the right column of table 3,

obtained from a completely different method. We remark that Macaualy 2 [26] can also

compute the refined (multi-variate) Hilbert series; we have performed this computation for

some examples and the results are exactly as in (4.21). This is encouraging indeed.

In general, the formula g(Nf ,Nc=2)(t) can be expanded in power series:

g(Nf ,Nc=2)(t) = 1 +
2Nf (2Nf − 1)

2
t2 +

(2Nf − 1)(2Nf )2(2Nf + 1)

12
t4

+
(2Nf − 1)(2Nf )2(2Nf + 1)2(2Nf + 2)

4(3!)2
t6 + . . . . (4.23)

We can rewrite this equation more compactly, as in (3.18), which in fact holds for all

Nf ≥ 1:

g(Nf ,Nc=2)(t) =

∞∑

k=0

(2Nf + k − 1)!(2Nf + k − 2)!

(2Nf − 1)!(2Nf − 2)!(k + 1)!k!
t2k = 2F1(2Nf − 1, 2Nf ; 2; t2) . (4.24)

4.1.3 Plethystic logarithms and M(Nf ,Nc=2)

Recall that according to the plethystic programme the Hilbert series is itself the plethystic

exponential of a function that encodes the defining relations. This does not contain quite

as much information as the defining equations themselves, given in, e.g., (3.25), but it does

give the generators and the the relations at each degree. We will thus use the plethystic
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logarithm to deduce the number of generators and constraints at each order of quarks and

antiquarks from the generating function [17, 18]. We recall the expression for the plethystic

logarithm, PL, the inverse function to PE, is

PL[g(Nf ,Nc)(t)] =

∞∑

k=1

µ(k)

k
log(g(Nf ,Nc)(tk)) , (4.25)

where µ(k) is the Möbius function. The significance of the series expansion of the plethystic

logarithm is stated in [17, 18]: the first terms with plus sign give the basic generators while

the first terms with the minus sign give the constraints between these basic generators. If

the formula (4.25) is an infinite series of terms with plus and minus signs, then the moduli

space is not a complete intersection and the constraints in the chiral ring are not trivially

generated by relations between the basic generators, but receives stepwise corrections at

higher degree. These are the so-called higher syzygies.

Let us calculate the plethystic logarithms for Nf = 1, . . . , 4:

PL[g(1,2)(t)] = t2 , (4.26)

PL[g(2,2)(t)] = 6t2 − t4 ,

PL[g(3,2)(t)] = 15t2 − 15t4 + 35t6 − 126t8 + 504t10 + . . . ,

PL[g(4,2)(t)] = 28t2 − 70t4 + 420t6 − 3360t8 + 29148t10 + . . . .

Take PL[g(4,2)(t)] as an example: from Observation (3.8), we see that the coefficient 28 of

t2 are the number of mesons and the coefficient −70 indicates that there are 70 constraints

among mesons according to (3.17).

We can conclude some properties of the moduli spaces from these results as follows. For

(Nf = 1, Nc = 2), there are no constraints between the generators and hence the moduli

spaces are freely generated. For (Nf = 2, Nc = 2), there are six basic generators at order

two, and one constraint between these generators at order four. Since the dimension of the

moduli space (which is dimM(Nf =2,Nc=2) = 22 + 1 = 5) plus the number of constraints

(one) is equal to the number of basic generators (six), the moduli space in this case is a

complete intersection. These conclusions agree with Observations 3.1 and 3.5.

4.2 The case of three colours: Nc = 3

Emboldened by our success with two colours, let us move on to three.

4.2.1 (Nf , Nc = 3) with arbitrary flavours

There are Nf quarks transforming in the fundamental representation and Nf antiquarks

transforming in the antifundamental representation. Using the notation we introduced

in (4.4), we find that the generating function is

g(Nf ,Nc=3)(t1, . . . , tNf
, t̃1, . . . , t̃Nf

) = (4.27)

=

∫

SU(3)
dµSU(3) PE




χ

SU(3)
[1,0] (z1, z2)

Nf∑

i=1

t̃i + χ
SU(3)
[0,1] (z1, z2)

Nf∑

j=1

tj




 ,
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with χ
SU(3)
[1,0] (z1, z2) = z1 + z2

z1
+ 1

z2
, χ

SU(3)
[0,1] (z1, z2) = 1

z1
+ z1

z2
+ z2 and the Haar measure

becomes

∫

SU(3)
dµSU(3) =

1

6

1

(2πi)2

∮

|z1|=1

dz1

z1

∮

|z2|=1

dz2

z2
× (4.28)

×

(
1 −

z2
1

z2

)(
1 −

z2
2

z1

)
(1 − z1z2)

(
1 −

z2

z2
1

)(
1 −

z1

z2
2

)(
1 −

1

z1z2

)
.

The plethystic exponential in (4.27) can be simplified to

Nf∏

i=1

[
(1 − t̃iz1)(1 − t̃iz

−1
1 z2)(1 − t̃iz

−1
2 )(1 − tiz

−1
1 )(1 − tiz1z

−1
2 )(1 − tiz2)

]−1
. (4.29)

We note that for the z2 integral, the poles inside the unit circle are located at z2 = 0, t̃i, tiz1,

and for the z1 integral, such poles are located at z1 = 0,
∏

i<j t̃it̃j, ti. Using the residue

theorem, we find that

g(1,3)(t1, t̃1) =
1

1 − t1t̃1
, (4.30)

g(2,3)(t1, t2, t̃1, t̃2) =
1∏

1≤i,j≤2(1 − tit̃j)
, (4.31)

g(3,3)(t1, t2, t3, t̃1, t̃2, t̃3) =
1 −

∏3
i=1 tit̃i

(1 −
∏3

i=1 ti)(1 −
∏3

j=1 t̃j)
∏

1≤i,j≤3(1 − tit̃j)
. (4.32)

Since the generating function g(4,3) in eight variables is very long (three pages in a

Mathematica notebook), we shall not present its formula here. However, if we unrefine

and set ti = t and t̃i = t̃, the calculation is slightly easier and we obtain that

g(4,3)(t, t̃) =
(
(1 − t3)4(1 − tt̃)16(1 − t̃3)4

)−1
× (4.33)

[
1 − 4t̃4t + 6t̃8t2 − 16t̃3t3 + 24t̃6t3 − 16t̃9t3 − 4t̃t4 + 31t̃4t4−

20t̃7t4 + 10t̃10t4 − 24t̃8t5 + 24t̃3t6 − 36t̃6t6 + 24t̃9t6 + 10t̃12t6 −

20t̃4t7 − 16t̃7t7 + 24t̃10t7 − 16t̃13t7 + 6t̃2t8 − 24t̃5t8 + 72t̃8t8 −

24t̃11t8 + 6t̃14t8 − 16t̃3t9 + 24t̃6t9 − 16t̃9t9 − 20t̃12t9 + 10t̃4t10 +

24t̃7t10 − 36t̃10t10 + 24t̃13t10 − 24t̃8t11 + 10t̃6t12 − 20t̃9t12 + 31t̃12t12 −

4t̃15t12 − 16t̃7t13 + 24t̃10t13 − 16t̃13t13 + 6t̃8t14 − 4t̃12t15 + t̃16t16
]

.

If we completely unrefine and set ti = t̃i = t, we will have the following results which

– 25 –



J
H
E
P
0
5
(
2
0
0
8
)
0
9
9

will be useful later and which again agree completely with table 3:

g(1,3)(t) =
1

1 − t2
= 1 + t2 + t4 + t6 + t8 + t10 + . . . , (4.34)

g(2,3)(t) =
1

(1 − t2)4
= 1 + 4t2 + 10t4 + 20t6 + 35t8 + 56t10 + . . . ,

g(3,3)(t) =
1 − t6

(1 − t3)2(1 − t2)9
=

1 + t3

(1 − t3)(1 − t2)9

= 1 + 9t2 + 2t3 + 45t4 + 18t5 + 167t6 + 90t7 + 513t8 + 332t9 +

1377t10 + 1008t11 + 3335t12 + 2664t13 + . . . ,

g(4,3)(t) =
(
(1 − t2)16(1 − t3)8

)−1
×

[
1−8t5−16t6+31t8+48t9+12t10−40t11−68t12−48t13+4t14+48t15+72t16+

48t17+4t18−48t19−68t20−40t21+12t22+48t23+ 31t24 − 16t26 − 8t27 + t32
]

= 1+16t2+8t3+136t4+120t5+836t6+960t7+4163t8+5480t9+17708t10 + . . . ,

g(5,3)(t) =
(
(1 − t)22(1 + t)16(1 + t + t2)7

)−1
×

[
1 + t + 10t2 + 23t3 + 68t4 + 135t5 + 281t6 + 446t7 + 695t8

+895t9 + 1090t10 + 1115t11 + 1090t12 + 895t13 + 695t14

+446t15 + 281t16 + 135t17 + 68t18 + 23t19 + 10t20 + t21 + t22
]

= 1 + 25t2 + 20t3 + 325t4 + 450t5 + 3025t6 + 5280t7 + 22550t8 + . . . . (4.35)

4.2.2 Plethystic logarithms and M(Nf ,Nc=3)

As before, we can take the plethystic logarithms of the generating functions to find the

defining equations of M(Nf ,Nc=3). For Nf = 1, . . . , 5 we have:

PL[g(1,3)(t)] = t2 ,

PL[g(2,3)(t)] = 4t2 ,

PL[g(3,3)(t)] = 9t2 + 2t3 − t6 ,

PL[g(4,3)(t)] = 16t2 + 8t3 − 8t5 − 16t6 + 31t8 + 48t9 − 16t10 + . . . ,

PL[g(5,3)(t)] = 25t2 + 20t3 − 50t5 − 110t6 + 30t7 + 575t8 + 1010t9 − 1177t10 + . . . .
(4.36)

As an example, let us consider PL[g(4,3)(t)]: from Observation 3.3, the coefficient 16 of t2

is the dimension of the bifundamental representation of SU(4) × SU(4) and hence it is the

number of mesons; the coefficient 8 of t3 is the number of baryons + antibaryons. The

coefficient −8 of t5 indicates the number of constraints at order 5 of quarks + antiquarks,

namely the ones given by (3.12). Similarly, the coefficient −16 of t6 indicates the number

of constraints at order 6 of quarks + antiquarks, namely the ones given by (3.11).

We can conclude some properties of the moduli spaces from these results as follows.

For Nf = 1, 2, there are no constraints between the generators and hence the moduli spaces

are freely generated. For Nf = 3, there are nine basic generators at order two quarks and

antiquarks, two basic generators at order three quarks and antiquarks, and one constraint

between these generators at order six quarks and antiquarks. Since the dimension of the

moduli space (which is dimM(Nf =3,Nc=3) = 32 + 1 = 10) plus the number of constraints
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(one) is equal to the number of basic generators (which is 9 + 2 = 11), the moduli space in

this case is a complete intersection. These conclusions agree with Observations 3.1 and 3.5.

4.3 Palindromic numerator: a proof using plethystics

We have observed in many case studies before that the numerator of the generating function

(Hilbert series) for SQCD is palindromic, i.e. it can be written in the form:

P (t) =
N∑

k=0

akt
k , (4.37)

with symmetric coefficients aN−k = ak. This observation (cf. section 3.4.5) would imply

that the SQCD chiral ring is Gorenstein Cohen-Macaulay, and that the classical moduli

space is an affine Calabi-Yau variety. In this section, as promised, we shall show that this

palindromic property holds in general:

Theorem 4.14. Let P (t) be a numerator of the generating function (Hilbert series)

g(Nf ,Nc)(t) and suppose that P (1) 6= 0. Then, P (t) is palindromic.

We shall use the following lemma to prove the above theorem.

Lemma 4.15. Let d = dim(M(Nf ,Nc)). Then, the generating function obeys:

g(Nf ,Nc)(1/t) = (−1)dt2Nf Ncg(Nf ,Nc)(t) . (4.38)

Proof. Let us start by writing down g(Nf ,Nc)(t) as follows:

g(Nf ,Nc)(t) =

∫

SU(Nc)
dµSU(Nc) PE

[
Nf

(
χ

SU(Nc)
[1,0,...,0] + χ

SU(Nc)
[0,...,0,1]

)
t
]

=

∫

SU(Nc)

dµSU(Nc)∏Nc

i=1(1 − tφi)Nf (1 − tφ−1
i )Nf

, (4.39)

where φi are the coordinates on the maximal torus of the SU(Nc) gauge group. We em-

phasise that, as before, the modulus of the argument of the function g(Nf ,Nc) must be less

than 1. Now consider gn(1/t). Under the transformation t to 1/t, the integrand in (4.39)

changes to

1
∏Nc

i=1(1 − t−1φi)Nf (1 − t−1φ−1
i )Nf

=
t2Nf Nc

∏Nc

i=1(1 − tφi)Nf (1 − tφ−1
i )Nf

. (4.40)

Since |t| < 1 implies that |1/t| > 1 and vice-versa, great care must be taken when evaluating

the integral in order to keep the directions of contour integrations and hence the overall

sign correct. An easy way to obtain the correct overall sign is to think about the expansion

of g(Nf ,Nc)(t) as a Laurent series around t = 1:

g(Nf ,Nc)(t) =
∞∑

k=−d

ck(t − 1)k ∼
c−d

(t − 1)d
, (4.41)

for t → 1. (Recall that d is the dimension of the moduli space, which is equal to the order of

the pole at t = 1.) Therefore, we see that as t → 1, the signs of g(Nf ,Nc)(1/t) and g(Nf ,Nc)(t)

differ by (−1)d. Combining this result with (4.40), we prove the assertion (4.38). �

We are now ready for our claim.
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Proof of theorem 4.14. We note that the denominator of the generating function

g(Nf ,Nc) is in the form
∏

k(1 − tak)bk , where ak and bk are non-negative integers. Observe

that upon the transformation t to 1/t, the denominator picks up the sign (−1)
P

k bk . Now

if the numerator P (t) does not vanish at t = 1, then
∑

k bk is exactly the order of the

pole of the generating function at t = 1, which is equal to the dimension d of the moduli

space. Since P (t) = g(Nf ,Nc)(t)
∏

k(1 − tak)bk , it follows from (4.38) that P (t) is indeed

palindromic. �

Therefore, the numerator of the Hilbert series (generating function) for M(Nf ,Nc) is in

general palindromic and thus M(Nf ,Nc) is Calabi-Yau.

5. Character expansion and global symmetries

In the previous section, we have obtained the generating functions analytically for various

(Nf , Nc) theories. As we mentioned earlier, the coefficients of tk in g(Nf ,Nc)(t) is the number

of independent GIOs at the k-th order of quarks and antiquarks. We shall see in this

section that this number is in fact the dimension of some irreducible representation of the

global symmetry at that order. This is in the spirit of how plethystics of the master space

encode the global symmetries of the theory [23]. Moreover, we shall see that the character

expansion allows us to write down the generating function for any (Nf , Nc) theory in a

very compact and enlightening way as follows:

g(Nf ,Nc)(t, t̃) =
∑

n1,n2,...,nk,ℓ,m≥0

[n1, n2, . . . , nk, ℓNc;L, 0, . . . , 0; 0, . . . , 0,mNc;R, nk, . . . , n2, n1]t
a t̃b .

(5.1)

where k = Nc − 1, a = ℓNc +
∑k

j=1 jnj, b = mNc +
∑k

j=1 jnj and we have again used

the notation below Observation 3.3 for the representation. We shall discuss this important

result further in Observation 5.20.

For Nf = Nc this formula goes through and has the form

g(Nc,Nc)(t, t̃) =
∑

n1,n2,...,nk,ℓ,m≥0

[n1, n2, . . . , nk;nk, . . . , n2, n1] ta t̃b , (5.2)

whereas for Nf < Nc this formula has Nf infinite sums and takes the form

g(Nc,Nc)(t, t̃) =
∑

n1,n2,...,nNf
≥0

[n1, n2, . . . , nNf−1;nNf−1, . . . , n2, n1] ta t̃a , (5.3)

with a =
∑Nf

j=1 jnj.

5.1 The case of two colours revisited

Let us begin again with the simplest case of Nc = 2. The formula (3.18) suggests:

Observation 5.16. For any Nf , the character expansion of the (Nf , Nc = 2) generating

function can be written as

g(Nf ,Nc=2)(t) =

∞∑

k=0

χ
SU(2Nf )

[0,k,0,...,0]t
2k . (5.4)

In the following subsections, we shall derive (5.4) for various case studies.
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5.1.1 The example of (Nf = 2, Nc = 2)

Let us first study two flavours. The generating function g(Nf =2,Nc=2)(t1, . . . , t4) was given

in (4.19). Since the global symmetry here is SU(4), we shall write this equation as a series

expansion of the characters of SU(4) representations. It is convenient here to take the

coordinates on the maximal torus of SU(4) to be12

φ1 =
z1z2

z3
, φ2 =

z1z3

z2
, φ3 =

z2z3

z1
, φ4 =

1

z1z2z3
. (5.5)

With this choice of coordinates, the character of the fundamental representation of SU(4)

can be written as

χ
SU(4)
[1,0,0](z1, z2, z3) =

4∑

a=1

φa =
z1z2

z3
+

z1z3

z2
+

z2z3

z1
+

1

z1z2z3
. (5.6)

Let us write the chemical potentials ti, where i = 1, . . . , 4, as

ti = tφi . (5.7)

Substituting this in (4.19), we find that

g(Nf =2,Nc=2)(t; z1, z2, z3) = (1 − t4)

(
3∏

i=1

(1 − t2z2
i )(1 − t2/z2

i )

)−1

, (5.8)

with the series expansion

g(Nf =2,Nc=2)(t; z1, z2, z3) = (1− t4)

∞∑

n1,...,n6=0

t2(n1+...+n6)z
2(n2−n1)
1 z

2(n4−n3)
2 z

2(n6−n5)
3 . (5.9)

Next we shall prove that the expression in (5.9) is indeed the character expansion of the

SU(4) global symmetry.

We shall state and prove two lemmata that will be of use later:

Lemma 5.17. Let V be the fundamental representation of SU(4). Then13

[0,m, 0] ⊕ Symm−2(Λ2V ) = Symm(Λ2V ) . (5.10)

12We note that this choice of coordinates is different from those in (4.7). The present choice is more

convenient here.
13We shall use the notion Symk for symmetric powers and Λk for exterior powers. For the fundamental

representation V = [1, 0, . . . , 0], SymkV = [k, 0, . . . , 0] and ΛkV = [0, . . . , 1, 0, . . . , 0] (where 1 occurs in the

k-th position from the left). Their characters in the case k = 2 are given by the formulae

χSym2V (g) =
1

2

`

χV (g)2 + χV (g2)
´

,

χΛ2V (g) =
1

2

`

χV (g)2 − χV (g2)
´

.
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Proof. Consider the Plücker embedding of the Grassmannian of two-dimensional quotient

spaces of V , G = Grass2V , in the projective space P(Λ2V ∗) of one-dimensional quotients

of Λ2V . Note that G is a quadric hypersurface in P
5, and so polynomials vanishing on

G are those divisible by the quadratic polynomial that defines G. Since the space of all

homogeneous polynomials of degree m on P(Λ2V ∗) is Symm(Λ2V ), we see that the subspace

of those polynomials of degree m on P(Λ2V ∗) that vanish on G is Symm−2(Λ2V ). Then we

have the exact sequence

0 → Symm−2(Λ2V ) → Symm(Λ2V ) → Wm → 0 , (5.11)

where it can be shown [41] that Wm is an irreducible representation [0,m, 0]. Since the

exact sequence splits, the relation (5.10) follows. �

Lemma 5.18. Let V be the fundamental representation of SU(4) and let {λj}
6
j=1 be the

eigenvalues of the action of the maximal torus on Λ2V . Then

χ
SU(4)

Symk(Λ2V )
=

∑

1≤i1≤...≤ik≤6

λi1 . . . λik . (5.12)

Proof. Let us take a basis of Λ2(V ) to be {X1, . . . ,X6} for SU(4). Let T be a maximal

torus of Λ2(V ) and let D ∈ T . Then D is a diagonal matrix, say, D = diag(λ1, . . . , λ6).

Therefore, the eigenvalue of D corresponding to the eigenvector Xi1 ⊗ . . . ⊗ Xik is

λi1 . . . λik . Since we know that the monomials of degree k in X1, . . . ,X6 form a basis

of Symk(Λ2V ), (5.12) follows. �

From (5.6), the character of Λ2V is given by

χ
SU(4)
Λ2V

(z1, z2, z3) =
1

2

(
χ

SU(4)
V (z1, z2, z3)

2 − χ
SU(4)
V (z2

1 , z2
2 , z2

3)
)

=
1

z2
1

+ z2
1 +

1

z2
2

+ z2
2 +

1

z2
3

+ z2
3 . (5.13)

Therefore, we can take the eigenvalues λj of the action of the maximal torus of Λ2V to be

λ1 = z2
1 , λ2 = z−2

1 , λ3 = z2
2 , λ4 = z−2

2 , λ5 = z2
3 , λ6 = z−2

3 . (5.14)

Substituting these into (5.12), we obtain

χ
SU(4)

Symk(Λ2V )
=

∑

n1+...+n6=k

n1,...,n6≥0

z
2(n2−n1)
1 z

2(n4−n3)
2 z

2(n6−n5)
3 . (5.15)

Combining (5.9), (5.10), and (5.15), we find that the expression (5.9) is indeed a

character expansion:

g(Nf =2,Nc=2)(t) =

∞∑

k=0

(
χ

SU(4)

Symk(Λ2V )
− χ

SU(4)

Symk−2(Λ2V )

)
t2k =

∞∑

k=0

χ
SU(4)
(0,k,0,...,0)t

2k . (5.16)

This is in agreement with the formula (5.4).
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5.1.2 The example of (Nf > 1, Nc = 2)

Let us move on to a general number Nf > 1 flavours; here the global symmetry is SU(2Nf ).

Denote coordinates on the maximal torus of SU(2Nf ) by {φj}
2Nf

j=1 and, as before, substi-

tuting tj = tφj into the generating function g(Nf >1,Nc=2) in (4.21), we obtain

g(Nf >1,Nc=2)(t; zi) =

2n∑
k=1

(−1)k(tφk)
2n−3(1 − t2φ2

k)
∏

1≤i<j≤2n
i,j 6=k

(tφi − tφj)(1 − t2φiφj)

2
∏

1≤i<j≤2n
(tφi − tφj)(1 − t2φiφj)

. (5.17)

This equation can be simplified to the formula (5.4) using various identities of Schur poly-

nomials (see, e.g., appendix A of [41]) and the fact that the character χ(0,k,0,...,0) is given

by the Weyl character formula (see, e.g., section 24.2 of [41]):

χ[0,k,0,...,0] =

∣∣∣∣∣
χ[k,0,...,0] χ[k+1,0,...,0]

χ[k−1,0,...,0] χ[k,0,...,0]

∣∣∣∣∣ , (5.18)

where the character χ[k,0,...,0] is given by

χ[k,0,...,0] =
∑

(i1,...,ik)
P

1≤α≤k
αiα=k

P i1
1 P i2

2 . . . P ik
d

i1!1i1 · i2!2i2 · . . . · ik!kik
, (5.19)

where Pj := χ[1,0,...,0](z
j
1, . . . , z

j
2Nf

). For example, χ[3,0,...,0] = 1
3!P

3
1 + 1

2P1P2 + 1
3P3.

5.1.3 From SU(2Nf ) to SU(Nf )L × SU(Nf )R

According to Observation 3.7, we know that the global symmetry of (Nf , Nc = 2) theory

is SU(2Nf ). However, for Nc > 2, we have talked mainly about the SU(Nf )L × SU(Nf )R
global symmetry. In this section, we shall demonstrate how to decompose various repre-

sentations of SU(2Nf ) into those of SU(Nf )L × SU(Nf )R.

Here we shall denote the chemical potential counting the quarks in SU(2Nf ) by t, and

the ones counting the quarks and antiquarks in SU(Nf )L ×SU(Nf )R respectively by q and

q̃. Therefore, we have the relation

qχ
SU(Nf )L

[1,0,...,0] (xi) + q̃χ
SU(Nf )R

[0,...,1] (x̃i) = tχ
SU(2Nf )

[1,0,...,0] (zj) , (5.20)

where {xi}
Nf−1
i=1 and {x̃i}

Nf−1
i=1 are respectively variables of coordinates on the maximal

torus of the first and the second SU(Nf ), and {zj}
2Nf−1
j=1 are variables of coordinates on

the maximal torus of SU(2Nf ).

Let us choose the coordinates on the maximal tori according to (4.7) and (4.8). With

this choice of coordinates, (5.20) will be satisfied, if

q = tb , q̃ =
t

b
, zi = xib

i , zNf
= bNf , zNf +i = bNf−ix̃Nf−i , (5.21)
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where 1 ≤ i ≤ Nf − 1 and b is the chemical potential counting U(1)B-charges. Observe

that with this solution, the numbers of variables with zero degree, namely b, x’s, x̃’s and

z’s, are equal on both side of (5.20).

As an example, the fundamental representation [1, 0, . . . , 0] of SU(2Nf ) can be decom-

posed via its character as follows:

χ
SU(2Nf )

[1,0,...,0] (zj) = z1 +
z2

z1
+

z3

z2
+ . . . +

z2Nf−1

z2Nf−2
+

1

z2Nf−1

= b

(
x1 +

x2

x1
+ . . . +

xNf−1

xNf−2
+

1

xNf−1

)

+
1

b

(
x̃Nf−1 +

x̃Nf−2

x̃Nf−1
+ . . . +

x̃1

x̃2
+

1

x̃1

)

= bχ
SU(Nf )L

[1,0,...,0] (xi) +
1

b
χ

SU(Nf )R

[0,...,0,1] (x̃i)

= bχ
SU(Nf )L×SU(Nf )R

[1,0,...,0;0,...,0] (xi) +
1

b
χ

SU(Nf )L×SU(Nf )R

[0,...,0;0,...,0,1] (xi) , (5.22)

where we have used (5.21) to obtain the second equality. Hence, we may write

[1, 0, . . . , 0]SU(2Nf ) → [1, 0, . . . , 0; 0, . . . , 0]SU(Nf )L×SU(Nf )R

⊕[0, . . . , 0; 0, . . . , 1]SU(Nf )L×SU(Nf )R
. (5.23)

Let us now decompose the representation [0, k, 0, . . . , 0]SU(2Nf ). We write down the

character χ
SU(2Nf )

[0,1,0,...,0] using the formula (5.18). Once we substitute z’s by x’s and x̃’s ac-

cording to (5.21), we obtain the following decomposition:

[0, k, 0, . . . , 0]SU(2Nf ) →
k∑

n1=0

∑

n1+ℓ+m=k

[n1, ℓ, 0, . . . , 0; 0, . . . 0,m, n1]SU(Nf )L×SU(Nf )R
.

(5.24)

We can therefore replace t2k by qn1+2ℓq̃n1+2m and rewrite the character expansion

in (5.4) as follows:

Observation 5.19. The SU(Nf )L ×SU(Nf )R character expansion of the generating func-

tion g(Nf ,Nc=2) is given by

g(Nf ,Nc=2) (q, q̃) =
∑

n1,ℓ,m≥0

[n1, ℓ, 0 . . . , 0; 0, . . . , 0,m, n1]q
n1+2ℓq̃n1+2m , (5.25)

where the square bracket denotes the character of the [n1, ℓ, 0 . . . , 0; 0, . . . , 0,m, n1] repre-

sentation of SU(Nf )L × SU(Nf )R. This equation takes the form of (5.1), as expected.

This result is what is expected if we temporarily distinguish quarks from antiquarks

in Nc = 2 theory. The reason is as follows. A meson can either be regarded as an object

transforming in the representation [1, 0, . . . , 0; 0, . . . , 0, 1] of SU(Nf )L × SU(Nf )R or as an

object transforming in the representations [0, 1, 0, . . . , 0; 0, . . . , 0] or [0, . . . , 0; 0, . . . , 0, 1, 0]

of SU(Nf )L × SU(Nf )R, in which case it can respectively be regarded as a ‘baryon’ or an
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‘antibaryon’. As we mentioned in section 3.3, any GIO in the Nc = 2 theory must be a

(symmetric) product of mesons. Therefore, without the constraints generated by (3.17),

we would say that a GIO transforms in the SU(Nf )L × SU(Nf )R representation

[n1, 0, . . . , 0; 0, . . . , 0, n1] ⊗S Symℓ[0, 1, 0, . . . , 0; 0, . . . , 0] ⊗S Symm[0, . . . , 0; 0, . . . , 0, 1, 0],

for some non-negative integers n1, ℓ, m. However, as we mentioned in a comment preceding

the constraint (3.17) that any product of M ’s antisymmetrised on 3 (or more) flavour

indices must vanish, it follows that the result of these symmetric tensor products is an

irreducible representation with all the numbers located after the second positions from the

left and right being zeros, i.e. [n1, ℓ, 0 . . . , 0; 0, . . . , 0,m, n1], which is in accordance with the

result in (5.25).

5.2 Character expansion for general (Nf , Nc)

Having revisited two colours let us now study the general case.

Terminology: in order to avoid cluttered notation, henceforth we shall abuse terminol-

ogy by referring to each character by its corresponding representation.

Armed with an insight from (5.25), we now propose the character expansion of the

generating function of any (Nf , Nc) theory.

Observation 5.20. The character expansion of the generating function of SQCD is:

g(Nf ,Nc)(t, t̃) =
∑

n1,n2,...,nk,ℓ,m≥0

[n1, n2, . . . , nk, ℓNc;L, 0, . . . , 0; 0, . . . , 0,mNc;R, nk, . . . , n2, n1]t
at̃b .

(5.26)

In the above, k = Nc−1, a = ℓNc +
∑k

j=1 jnj is the number of boxes in the Young diagram

for the representation of SU(Nf )L, b = mNc +
∑k

j=1 jnj is the number of boxes in the

Young diagram for the representation of SU(Nf )R, and we have again used the notation

below Observation 3.3 for the representation.

We note that, as in (5.25), the asymmetry between ℓ and m arises due to the fact that

the baryons and antibaryons transform respectively as (0, . . . , 0, 1Nc ;L, 0, . . . , 0; 0, . . . , 0) and

(0, . . . , 0; 0, . . . , 0, 1Nc ;R, 0, . . . , 0). Moreover, since any product of M ’s, B’s, B̃’s antisym-

metrised on Nc + 1 (or more) flavour indices must vanish, it follows that all the numbers

located after the Nc-th positions from the left and right are zeros.

The character expansion of the Nf < Nc theory. We mentioned earlier that the

meson, which transforms in the bifundamental representation [1, 0, . . . , 0; 0, . . . 1] of the

global symmetry SU(Nf )L × SU(Nf )R, is the only basic generator of the GIOs. It follows
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that the character expansion of the Nf < Nc theory is encoded in the plethystic exponential:

gNf <Nc(t, t̃) = PE
[
[1, 0, . . . , 0; 0, . . . , 1]tt̃

]

=

∞∑

k=1

Symk[1, 0, . . . , 0; 0, . . . , 1]
(
tt̃
)k

=

∞∑

k=1

Nf∑

i=1

∞∑

ni=0

[
n1, n2, . . . , nNf−1;nNf−1, . . . , n2, n1

]
δ

(
k −

Nf∑

j=1

jnj

)(
tt̃
)k

,

=

Nf∑

i=1

∞∑

ni=0

[
n1, n2, . . . , nNf−1;nNf−1, . . . , n2, n1

] (
tt̃
)

NfP
j=1

jnj

, (5.27)

where the second equality follows from the basic property of the plethystic exponential

which produces all possible symmetric products of the function on which it acts, and the

third equality follows from (3.4).

A non-trivial check of the general character expansion (5.26). We note that the

dimension of the representation [a1, . . . , an−1] of SU(n) is given by the formula (see, e.g.,

(15.17) of [41]):

dim [a1, . . . , an−1] =
∏

1≤i<j≤n

(ai + . . . + aj−1) + j − i

j − i
. (5.28)

Applying this dimension formula to the representations in (5.26) for various (Nf , Nc) and

summing the series into closed forms, we obtain the expressions which are in agreement of

the earlier results, e.g. (4.30)–(4.34).

As an example, let us consider (Nf = 5, Nc = 3) theory. Using formula (5.28), we find

that

dim [n1, n2, ℓ, 0; 0,m, n2, n1] = [(4! 3! 2! 1!)−1

×(n1 + 1)(n1 + n2 + 2)(n1 + n2 + ℓ + 3)(n1 + n2 + ℓ + 4)

×(n2 + 1)(n2 + ℓ + 2)(n2 + ℓ + 0 + 3)

×(ℓ + 1)(ℓ + 0 + 2)

×(0 + 1)] × [the same expression with ℓ → m] .

Replacing the representation in (5.26) with this expression and summing over n1, n2, ℓ,m,

upon setting t = t̃ we recover the expression for g(5,3) in (4.34).

Character expansion of a plethystic logarithm. Using Observations 3.3 and 3.4, we

can write down the character expansion of the first few terms in the plethystic logarithm

of the generating function g(Nf ,Nc) from (5.26) as follows:

PL
[
g(Nf ,Nc)(t, t̃)

]
= [1, 0, 0, 0, 0; 0, 0, 0, 0, 1]tt̃ + [0, . . . , 0, 1, 0, 0; 0, 0, 0, 0, 0]tNc

+[0, 0, 0, 0, 0; 0, 0, 1, 0, . . . , 0]t̃Nc − [0, . . . , 0, 1, 0; 0, 0, 0, 0, 1]tNc +1t̃

−[1, 0, 0, 0, 0; 0, 1, 0, . . . , 0]tt̃Nc+1

−[0, . . . , 0, 1, 0, 0; 0, 0, 1, 0, . . . , 0]tNc t̃Nc + . . . (5.29)
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where the positions of 1’s in the representations of SU(Nf )L are indicated by the powers of

t, and the positions of 1’s in the representations of SU(Nf )R are indicated by the powers

of t̃. This expansion coincides precisely with the observations on the generators, relations

and their transformation properties under the global symmetry.

Having seen a number of character expansions, we can establish some selection rules

for the coefficients in the character expansion which will be extremely useful in reducing

the work in calculating the character expansion:

Observation 5.21. (Selection rules for the coefficients in the character expan-

sion)

1. Each irreducible representation of the global symmetry appears at most once as a

coefficient in the character expansion;

2. Each irreducible representation appearing as a coefficient in the character expansion

corresponds to a Young tableau, with t and t̃ counting the number of boxes. The

chemical potential t counts the number of boxes in the irreducible representation of

SU(Nf )L. Similarly, the chemical potential t̃ counts the number of boxes in the irre-

ducible representation of SU(Nf )R;

3. Suppose that the coefficient of the term tk1 t̃k2 is [a; b]. Then, the coefficient of the

term tk2 t̃k1 is [b̄; ā], where the bar indicates the complex conjugate representation. For

Nf ≤ Nc this is correct modulo Nc;

4. If the degrees of t and t̃ are equal, then the coefficient of such a term is a real (self-

conjugate) representation. In the square bracket notation, the numbers in the bracket

are palindromic with respect to the semicolon.

In the following subsections, we demonstrate the above observations in various examples.

5.2.1 The example of (Nf = 2, Nc = 3)

Recall that the global symmetry of the theory is SU(2)×SU(2) = SO(4), and the generating

function is given in (4.31). Treating the chemical potentials t1, t2 as the chemical potentials

for the fundamental representation of the first SU(2) and treating the chemical potentials

t̃1, t̃2 as the chemical potentials for the antifundamental representation (which is identical

to the fundamental representation) of the second SU(2), we make the substitutions:

t1 = tz , t2 =
t

z
, t̃1 = t̃w , t̃2 =

t̃

w
. (5.30)

Substituting these into (4.31), we find that

g(2,3)(t, t̃; z,w) =
1(

1 − tt̃
wz

)(
1 − tt̃w

z

)(
1 − tt̃z

w

) (
1 − tt̃wz

)

= PE
[
[1; 1]tt̃

]
(5.31)

where the second equality follows because the character of the bifundamental represen-

tation of SU(2) × SU(2) (otherwise known as the vector representation of SO(4)) is
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[1; 1] = [1; 0][0; 1] = (z + 1/z)(w + 1/w). This is in agreement with (5.27). Therefore,

the character expansion is

g(2,3)(t, t̃) =
∞∑

n=0

∞∑

m=0

[n;n]
(
tt̃
)n+2m

. (5.32)

5.2.2 The example of (Nf = 3, Nc = 3)

The global symmetry of the theory is SU(3) × SU(3), and the generating function was

given in (4.32). Treating the chemical potentials t1, t2, t3 as the chemical potentials for the

fundamental representation of the first SU(3) and treating the chemical potentials t̃1, t̃2, t̃3
as the chemical potentials for the antifundamental representation of the second SU(3), we

make the substitutions:

t1 = tz1 , t2 =
z2

z1
t , t3 =

t

z2
, t̃1 =

t̃

w1
, t̃2 =

w1

w2
t̃ , t̃3 = t̃w2 . (5.33)

Substituting these into (4.32), we find that

g(3,3)(t, t̃) =
(
1 − [0, 0; 0, 0]t3 t̃3

)
PE
[
[1, 0; 0, 1]tt̃ + [0, 0; 0, 0]t3 + [0, 0; 0, 0]t̃3

]
, (5.34)

where [1, 0; 0, 1] = [1, 0; 0, 0][0, 0; 0, 1] =
(
z1 + z2

z1
+ 1

z2

)(
1

w1
+ w1

w2
+ w2

)
and [0, 0; 0, 0] =

1. This result is what to be expected using the comment preceding Observation 3.6.

Alternatively, we can use equation (5.2) and write the character expansion of g(3,3) as

g(3,3)(t, t̃) =
∑

n1,n2,ℓ,m≥0

[n1, n2;n2, n1]t
n1+2n2+3ℓ t̃n1+2n2+3m . (5.35)

5.2.3 The example of (Nf = 4, Nc = 3)

The global symmetry here is SU(4) × SU(4) and the unrefined generating function was

given in (4.33). Using the same procedure as shown in previous examples, we obtain

the generating function g(4,3)(t, t̃; z1, . . . , z3, w1, . . . , w3) as follows. The numerator can be

written as

1 − [1, 0, 0; 0, 0, 0]t̃4t + [0, 1, 0; 0, 0, 0]t̃8t2 − [0, 0, 1; 1, 0, 0]t̃3t3 + [0, 0, 1; 0, 1, 0]t̃6t3−

[0, 0, 1; 0, 0, 1]t̃9t3 − [0, 0, 0; 0, 0, 1]t̃t4 − [0, 0, 0; 0, 1, 1]t̃7t4 + [0, 0, 0; 0, 0, 2]t̃10t4 −

[0, 1, 1; 0, 0, 0]t̃8t5 + [0, 1, 0; 1, 0, 0]t̃3t6 + [0, 1, 0; 0, 0, 1]t̃9t6 + [2, 0, 0; 0, 0, 0]t̃12t6 −

[1, 1, 0; 0, 0, 0]t̃4t7 + [0, 0, 1; 1, 0, 0]t̃7t7 + [0, 0, 1; 0, 1, 0]t̃10t7 − [0, 0, 1; 0, 0, 1]t̃13t7 +

[0, 0, 0; 0, 1, 0]t̃2t8 − [0, 0, 0; 1, 1, 0]t̃5t8 + ([0, 2, 0; 0, 0, 0] + [1, 0, 1; 0, 0, 0] +

2[0, 0, 0; 0, 0, 0] + [0, 0, 0; 1, 0, 1] + [0, 0, 0; 0, 2, 0])t̃8t8 +

c.c./exchange up to t̃16t16 , (5.36)

where ‘c.c./exchange’ means that the rest of the terms can be obtained by exchanging the

representations before and after the semicolon, and/or taking a complex conjugate represen-

tation, according to Observation 5.21. For example, the coefficient of t̃7t10 is [0, 1, 0; 1, 0, 0],

and the coefficient of t̃12t15 is the conjugate representation of that of t̃16−12t16−15 = t̃4t:

– 36 –



J
H
E
P
0
5
(
2
0
0
8
)
0
9
9

−[0, 0, 1; 0, 0, 0]. The coefficient of t̃8t8 is a real (self-conjugate) representation. The recip-

rocal of the denominator can be written as

PE
[
[1, 0, 0; 0, 0, 1]tt̃ + [0, 0, 1; 0, 0, 0]t3 + [0, 0, 0; 1, 0, 0]t̃3

]
. (5.37)

Alternatively, we can write the character expansion of g(4,3) as follows:

g(4,3)(t, t̃) =
∑

n1,n2,n3,m3≥0

[n1, n2, n3;m3, n2, n1]t
n1+2n2+3n3 t̃n1+2n2+3m3 . (5.38)
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